
www.manaraa.com
48 IT Pro March ❘ April 2007 1520-9202/07/$25.00 © 2007 IEEE

P E R S P E C T I V E S

A Baker’s Dozen:
13 Software Engineering
Challenges
Jeffrey Voas

S oftware engineering
has developed over the
last few decades into
a discipline of many

diverse areas of interest. Ex-
amples include test-
ing, programming,
design, architec-
ture, maintenance,
metrics, and evo-
lution. Specialty
conferences and
publications pro-
liferate, stay for
a short time,and
then disappear,
while software
engineering re-
mains as non-
traditional
engineering
—part craft,
part art,and
part logic.

No one has a magic recipe for
building highly reliable soft-
ware that can successfully be
applied to all projects and orga-
nizations. Software engineering
suffers from a nuance factor
that may never enjoy a work-

around capability. In this article,
I look at 13 major research chal-
lenges for the software engi-
neering community and provide
hints on how to solve them.

To begin, I should note that
the notion of a grand challenge
is not new.Here are a few exam-
ples of grand challenges:

• The Grand Challenges in
Global Health initiative,
established on 27 June 2005,
helps fund scientific research
to fight diseases that kill mil-
lions of people each year.The
initiative has offered grants
totaling US$436.6 million for
a range of innovative projects
(http://www.grandchallengesgh.
org).

• In October 2004, SpaceShip-
One became the first pri-
vately funded spacecraft to
reach suborbit, nearly 70
miles above Earth. A year
later,“Stanley,”a Volkswagen
Touareg modified by Stan-
ford University students, cov-
ered some 130 miles of desert
without a human driver. It
was guided by computer pro-
grams and sensors (Christian
Science Monitor, 12 Jan.2006;
http://www.csmonitor.com/
2006/0112/p13s01-stss.html).

• In 2001, the National Re-
search Council defined the
grand challenge in environ-
mental science this way: “…
the challenge to understand
how the Earth’s major bio-

Here are
13 challenges facing the

software engineering
research and practitioner
community, and hints on
what to do about them.

geochemical cycles are being
perturbed by human activi-
ties; to be able to predict the
impact of these perturbations
on local, regional, and global
scales; and to determine how
these cycles may be restored
to more natural states should
such restoration be deemed
desirable” (http://newton.
nap.edu/books/0309072549/
html/14.html).

What is suggested here is that
there is both a desire to be the
creator of these difficult tasks
as well as people who wish to
demonstrate their abilities
against them.Unfortunately, the
challenges I discuss here will not
have the politics, notoriety, or
sex appeal of other grand chal-
lenges. However, I believe that
for computer scientists and com-
puter engineers, these grand
challenges present enough work
to be solved to be considered
“grand” challenges in their
own right.

CHALLENGE 1:
SOFTWARE QUALITY

Software quality is something
similar to beauty; it is in the eye
of the beholder.Therefore, soft-
ware quality is mostly intuitive,
not formal.Thus, you will know
it when you see it.The first chal-
lenge to the software engineer-
ing community is to define
quality. Is it based on standards,
people, and processes? Or is it

www.manaraa.com
March ❘ April 2007 IT Pro 49

defined on the quality of the product?
If you take the latter position, then
you must consider the attributes of
quality: reliability, safety, security,
testability, maintainability, perfor-
mance, availability, fault-tolerance,
recovery, and survivability.

A software system developed to
address these attributes would be
considered of high quality, but that is
nontrivial to achieve.

Further, many of these attributes
are hard to define and measure. That
creates tension, a problem to be dis-
cussed later. Consider the following
statement:“It is easier to build correct
software than it is to ever know that
you have done so.” That may seem
odd, but it’s true.

Hint: Start with a basic perspective
such as “quality means fit for pur-
pose,”and then start decomposing the
terms fit and purpose.

CHALLENGE 2:
RETURN ON INVESTMENT

If your software system works as
desired and continuously, but you
paid too much for it—given that you
later learned of another system that
would have been equally satisfying
for half the price—would you be
pleased with your ROI?

What is the advantage of building
reliable software versus lesser quality
software? Poor quality software cre-
ates business opportunities in the
maintenance phase for the original
developer. I recall examples where it
was mandated to create lesser quality
software since the profit margins on a
delivered version were so low that
you simply waited until the bugs
started to fly.That is, the profit was in
the extermination phase.

Fortunately, the software engineer-
ing community is working to develop
ROI metrics using field data that is
based on statistics, not anecdotes.
However, the relationship between
methods,approaches,and models with
respect to the total cost of ownership
economics is still immature because of
many unforeseen variables. The
empirical software engineering com-

munity is working diligently, but
generic solutions are years away.

Hint: This is not so much of a
research challenge but an observation
that requires consistent journaling on
projects so that lessons can be col-
lected, aggregated, and disseminated
to the larger scientific community.

CHALLENGE 3:
PROCESS IMPROVEMENT

Can clean pipes produce dirty
water? Yes! (J. Voas, IEEE Software,
vol.14,no.4,1997,pp.93-95;http://doi.
ieeecomputersociety.org/10.1109/MS.
1997.595964.) The software engineer-
ing community has embraced the
notion that good software develop-
ment processes make for better soft-
ware products. In physical engineering
that is true,but in software engineering,
that is still debatable. CMM Level 5
does not guarantee high reliability soft-
ware;it only suggests such.Also,this ties
back to Challenge 2:How much higher
quality can I afford—that is,where can
I cut corners?

A few challenges related to soft-
ware testing and verification have
forced the software engineering com-
munity to acknowledge that it is eas-
ier to assess a process than to assess
the software product, and that has
steered the community toward assess-
ing process far more frequently than
assessing product.

Hint: Blend a variety of common
sense do’s and don’ts with any
process-oriented scheme. If you see
that some portion of the standard sim-
ply does not apply to you, document
why, and move on.

CHALLENGE 4:
METRICS AND
MEASUREMENT

Metrics on projects are collected
routinely, but their interpretation is
dubious. Correlating the collected
information to a project’s true status is
difficult.The metrics and measurement
research and practitioner community
has long suffered from this dilemma,
and it is a reason why metrics are often
collected and then discarded.If you do
not know what the statistics mean,
what can you make of them?

Hint: If you are going to collect met-
rics for reasons other than what your
boss had in mind, try to get your orga-
nization to give you the time to train
others in your group and at least feed
the lessons derived from the collec-
tion back into future efforts.

CHALLENGE 5:
STANDARDS CONFUSION

What standard do I follow? There
are more than 1,000 existing software
engineering standards. Some are
geared toward testing, reliability,
safety, security, and so on.Also, some
standards are forced onto vendors by
government regulation.

Regardless, software vendors and
organizations that acquire software
are forced to comply and/or abide
with these standards, and the lack of
harmonization of various software
engineering standards makes this
another one of the key challenges that
software engineering faces.

Hint: Make sure that the standard
you select fits your organization.
General fact: You’ll be far better off
picking pieces and parts from various
standards that apply to you than
religiously following one to the letter
of the law.

CHALLENGE 6:
STANDARDS
INTEROPERABILITY

This challenge is defined as follows:
If I know nothing about two software
components,but I do know something
about the different standards that
were used to develop them, can I sim-

“It is easier
to build

correct software
than it is

to ever know
that you

have done so.”

www.manaraa.com
50 IT Pro March ❘ April 2007

ply look at the interoperability of the
standards and then make an assertion
about how the composed components
will behave?

The question here is whether the
composability of distinct standards may
prove to be an easier prediction chal-
lenge than the prediction problem of
component composability. Note that
what I am suggesting here is difficult
and rarely tackled.Why? Because some
standards are more system-oriented
versus component-oriented, and some
are more process-oriented versus prod-
uct-oriented. Once you look at those
cross-product combinations and then
throw in vertical domains such as med-
ical, energy, transportation, and so on,
the ability to harmonize any group into
a single statement of trustworthiness is
prone to failure,misinterpretation,and
apathy.

Hint: The same advice for Chal-
lenge 5 applies here. Pick the parts
that work and leave the rest behind.

CHALLENGE 7:
LEGACY SOFTWARE

The next challenge is when to
declare a legacy software system to
be beyond repair. In the mechanical
world, predictive decommissioning
of worn-out hardware is well under-
stood.Y2K was an example of where
the software and IT community had
no long-term vision concerning how
long old Cobol systems would sur-
vive.The result: economic burden on
IT infrastructures, and in some cases,
panic.

The challenge here is to better
understand the sustainability of sys-
tems before they are developed and
to create design-for-maintainability
paradigms and metrics that predict
either when to let die or what life
support should be rendered and at
what ROI.

Another myth in the software
legacy world is the notion of “size”:
the size of a fault, a fix, or the code.
We all have intuitions here, and they
are just that—intuitions. In short, size
should not matter if a huge modifica-
tion does not dynamically tickle most

of the rest of the code.A tiny modifi-
cation can have huge impacts if it
touches most syntax of the code.And
while the notion of static traceability
is pretty well understood, dynamic
traceability is not often applied for
the same reason that testing numer-
ous times with different test cases is
intractable.

Another important notion here is
when the code itself is never modi-
fied, though the world around it is. No
matter how good the software has
performed, if its environment has so
drastically changed, then the software
may need to be decommissioned.
Therefore it is vital to understand the
difference between the volatility of
the code and the environment.

Hint: Before any new project
begins, have that discussion on how
long the system and environment are
expected to last and how much money
is being set aside to keep it alive for
that period of time. Also, keep the
best documentation (software and
environment) around just in case
decommissioning does not occur as
you had planned.

CHALLENGE 8:
TESTING STOPPAGE CRITERIA

Testing is a huge cost: schedule slip-
pages, failure to detect obvious faults,
brand deterioration, and so on, are
hurdles.You can test forever in theory
to avoid several of these hurdles.
However the real challenge is how to

decide when to halt testing—that is,
what is a reasonable testing stoppage
criteria?

The underlying challenge is to
develop metrics and models that
define when testing should stop,
based on criteria other than money
and time constraints. Metrics and
models should be scientific and math-
ematical. Recognize that the deter-
mination for when to stop testing
safety-critical software is based on
regulatory standards, but those stan-
dards are not applied commonly for
general-purpose software due to
large monetary and time costs.

Note that testing to determine when
to stop testing is not the only rationale
for performing testing.Testing also has
a different issue,more related to struc-
tural unit testing, which requires its
own test stoppage criteria.This occurs
when a coverage metric such as
branch coverage is mandated,or when
a human or tool is simply unable to
generate a test case to cover a branch.
If the branch is truly unreachable, the
problem is solved; if not,are you going
to give up and stop?

Hint: Testing planning should occur
during development and require-
ments planning. Make sure someone
from the testing department is there
on day one. Once there, continually
explain if you think they are inching
toward an inevitable untestable sys-
tem. Be assertive and teach them
what they need to modify to lessen
that likelihood.

CHALLENGE 9:
INTEROPERABILITY AND
COMPOSABILITY

For this challenge, we must go back
and reconsider Challenge 1.That chal-
lenge dealt with defining software
quality. To compose two software
units, it is essential to understand the
notion of emergent behaviors. All of
the attributes mentioned in Challenge
1 are partially or totally emergent
once composed with other compo-
nents that retain their own individual
emergent behaviors.

P E R S P E C T I V E S

No matter how
good the software

has performed,
if its environment
has so drastically

changed, then
the software

may need to be
decommissioned.

www.manaraa.com

Therefore, the fusion of different
components into a single system
must, at the least, consider for a single
component

• the unique software version,
• the unique hardware that it resides

in,
• the operational environment,
• the insider or outsider threat space,
• the policies and procedures to be

enforced,
• the quality attributes it was devel-

oped to exhibit as behaviors, and
• time.

If you look at those seven entities
for a single component, and then con-
nect to a different component with its
own different variations on each of
those seven, you have a hard chal-
lenge in predicting how they will
behave as two become one.

Also, consider the role that the
interface(s) play in this union of the
two. They can be as unreliable and
damaging as the components being
joined. As we have waited for years,
we still wait for a solid, scalable the-
ory to disambiguate such intercon-
nections; we do not wish to return to
the days of interface “spaghetti”
logic.

Hint: Design for as much adapt-
ability in components as is possible.
Certain assumptions concerning
functionality are not malleable; how-
ever, there are aspects that are more
closely related to the external world
and are not part of the core function-
ality. They can be designed for reuse
with reduced amounts of rework
when they are joined to other code
components.

CHALLENGE 10:
OPERATIONAL PROFILES

The problem with this challenge is
that we have a difficult time agreeing
upon what is the real operational pro-
file. (“Toward a More Reliable
Theory of Software Reliability,” J.
Whittacker and J. Voas, Computer,
vol. 33, no. 12, 2000, pp. 36-42; http://
doi.ieeecomputersociety.org/10.1109/

2.889091). Most literature looks at
this problem as the probability that a
particular input vector is selected.
There is nothing wrong with that per-
spective, but you still must determine,
what a vector is.

The bottom line here is that software
has many invisible users that also affect
its executable behavior.The challenge

is to identify who those invisible users
are to better predict the software’s
operational reliability and behavior.
And any forward progress in address-
ing this challenge will also be beneficial
to creating an international standard
for software product certification.

Another point deals with the ques-
tion,When in the life cycle should we
be concerned with nailing down our
expectations on the operational pro-
file and the environment? For exam-
ple, should we first fix the limitations
on the target environment, and then
look at what software to build for the
environment, or vice versa? Or is
there a happy medium here?

Hint: If you cannot conceptualize
some aspects of the resulting target
environment(s), then you are not
likely to create a product that will
work in many of them. Pretend you
were going to build an outhouse out-
side a residence.What if you came to
find out later that the occupant was an
elephant? You need to get full disclo-
sure as to what the environment will
be as soon as the information is avail-
able, and voice concerns if needed.

CHALLENGE 11:
DESIGNING IN

This challenge addresses designing
in the attributes of software quality
mentioned in Challenge 1. These
attributes are desirable, however not
all are achievable. Some are emer-
gent, and some conflict, such as secu-
rity and performance.Also, there are
cost trade-offs for each—that is, you
spend more money on attribute x and
then have less for y.Therefore, one of
the toughest of the 13 grand chal-
lenges deals with the attributes’ tech-
nical and economic trade-offs that
result in software quality. There is
also another challenge here: How do
you build in the attributes from the
beginning of development and, in
particular, build in the ones that can-
not be quantified?

Hint: This is easier said than done,
but by asking these questions to a
client early, you will at least force
them to think about things like, Do
I care more about availability than
security? Do I care if the system
has a mean-time-to-repair of two
days?

CHALLENGE 12:
PRODUCT CERTIFICATION

In the physical world, certifying
physical attributes of physical entities
is not so difficult. In the virtual/
software community, certification
becomes a different challenge.

The challenge is how to certify
a nonphysical entity; it retains
observable behavioral aspects, but
they are highly influenced by the
environment, forcing them to be
emergent, and appear erratic, thus
making predictions suspicious. Non-
emergent qualities of nonphysical
systems can be assessed statically,
but those are of lesser value than
dynamic ones.

Hint: To date, the only real tool we
have is testing. Try off-nominal test-
ing and testing on the boundaries.We
have no official government or com-
mercial lab that performs true prod-
uct certification, and so here you are
pretty much on your own.

March ❘ April 2007 IT Pro 51

If you cannot
conceptualize some

aspects of the
resulting target

environment(s), then
you are not likely to

create a product
that will work in
many of them.

www.manaraa.com
52 IT Pro March ❘ April 2007

CHALLENGE 13:
SERVICES

The challenge that I wish to leave
you with is shown in Figure 1. What
we have is a simplistic view of why we
have little or no trust in software-
centric systems today.

Today, the notion of services is
becoming a central theme in all
aspects of life.While the days of bricks
and mortar will always be with us,
concerns about buildings collapsing
and bridges falling down are far from
what enters most minds.

The question then becomes some-
thing analogous to peeling an onion.
With the notion that a nonphysical
offering is in essence a service, the
physical versus nonphysical is a grand
challenge.

So what about services? Is there a
calculus for how to manage trust for
services? Or do all the same ideas for
software apply?

Thus, the final challenge is a sim-
plistic view as to why we have little or

no trust in software-centric systems
today.

Let’s begin by unpeeling this onion
in the figure to see what’s inside.The
core of the onion is the software,
version 1.1, and the next layer is the
hardware/system shell.

To fuel the software and hardware,
external stimuli from the environ-
ment must trigger the software and
the hardware so that execution
occurs. At that point, you have a sys-
tem that is operating under whatever
assumptions were wired into the soft-
ware and hardware,and selected from
the environment. Normally these
selections will be the more likely
(higher probability) environmental
factors that are expected to occur with
some quantifiable frequency.

However, expected environments
can be attacked from malicious envi-
ronments. This is shown in the threat
space layer in Figure 1. Note that the
threats in that space are not always
malicious and can simply be off-

nominal events that do not occur
frequently enough to be placed into
the environment layer.

As we continue to peel the onion,
we find that the four previously men-
tioned layers have not dealt with qual-
ity of service issues such as reliability,
performance, safety, availability, and
fault tolerance. Those too are attrib-
utes of the entire system that enhance
or detract from the system’s overall
behavior.

It is also necessary to add a layer—
policies—describing how the system
is to be run, operated, accessed and
controlled, and governed. The deci-
sions within this layer come from
upper management (CIOs, CEO,
security architects,and so on) who will
speak in a language unique to that
layer. They rely on technical staff to
make the translations from policies to
attributes, threats, environment,hard-
ware, and software. In short, there is
a chain of command by which com-
munication propagation occurs,

P E R S P E C T I V E S

t0 t

A2

A1

P2

P1

S1

E2

E1

S2

Policies Environment

Threat
space

“Attributes” space

Time

System

Software

T1 T2

V1.1
V1.2

Δ ∞

Figure 1. A grand challenge of software engineering
is centered around nonphysical offerings, or services.

www.manaraa.com

however not all propagation from the
policy space needs to be unidirec-
tional.

But the most interesting part of this
problem of nonphysical systems is not
the communication bridges between
layers.The most interesting challenge
is time. Time is the one part of this
model that no one can freeze (and
probably the threat space is a close
second to lack controllability). In this
figure, we see that at time t0, we are
subjected to a set of policies (P1),a set
of attributes (A2), an environment
(E1) that is challenged by a threat
space (T1), and we live in a hardware
world (S1) that operates software ver-
sion 1.1. However, at time t5, we are
subjected to a set of policies (P2),a set
of attributes (A1), an environment
(E2) that is challenged by a threat
space (T2), and we live in a hardware
world (S2) that operates software
version 1.1.

The challenge, as shown by the � in
the figure, is that as time moves we
want to know what else moves within
a particular layer and how that affects
the other layers upstream and down-
stream. Note that in this simple illus-

tration, I opted to not use a different
version of the software even though
v1.2 existed, however, I did modify all
other aspects of the enterprise.

So this problem,stated as succinctly
as possible, is

• understand the dependencies
between different members in the
same layer,

• determine how two adjacent layers
relate, and do so for all layers
whether adjacent or not, and

• figure out how to determine a pri-
ori what � will mean for the entire
enterprise based on understanding
the lesser �s.

Hint: Keep this perspective as you
continually run across � problems in
your everyday work.This simple view
should better explain where fall-
downs occur.

I n my opinion, the 13 challenges
listed here are the hardest and the
ones that need the most immedi-

ate research attention. They present
great opportunities and define a
roadmap for future exploration in the

software engineering research com-
munity. Many researchers are cur-
rently working in these 13 areas, but
the results have been slow in coming.

Note that I deliberately ignored
major problems in software security.
Software and computer security are
important,but security, in my opinion,
is a field unto itself, and these 13 are
more software engineering-oriented.

The bottom line is that the easier
problems in software engineering
have been addressed in past years.
This article addresses today’s harder
ones. Complexity today is so different
than in the past. And scalability adds
yet another set of worries that I did
not delve into here. ■

Jeffrey Voas is director of systems
assurance at SAIC and an SAIC Tech-
nical Fellow. Contact him at jeffrey.
m.voas@saic.com.

For further information on this or any
other computing topic, please visit our
Digital Library at http://www.computer.
org/publications/dlib.

March ❘ April 2007 IT Pro 53

www.computer.org/join/

Complete the online application and get

• immediate online access to Computer

• a free e-mail alias — you@computer.org

• free access to 100 online books on technology topics

• free access to more than 100 distance learning course titles

• access to the IEEE Computer Society Digital Library for only $118

Join the IEEE Computer Society online at

Read about all the benefits of joining the Society at

www.computer.org/join/benefits.htm

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

